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Serial relation and textural rough set

Şenol Dost

Abstract. The generalized rough set theory is based on the lower and
upper approximation operators defined on the binary relation. The
rough sets obtained from serial relations take an important place in
topological applications. In this paper, we consider serial relation for
texture spaces. A texturing U of a set U is a complete and completely
distributive lattice of subset of the power set P(U) which satisfies some
certain conditions. Serial relation is defined by using textural sections
and presections under a direlation on a texturing. We give some prop-
erties of serial direlation and a discussion on rough set theory from the
textural point of view under serial direlation. Further, the concept of
serial direlation has been characterized in terms of lower and upper
textural approximation operators.

1. Introduction

The rough set was introduced by Pawlak in 1982 as a tool for dealing
with the incomplete knowledge in information and decision systems. The
main concept of the theory is the lower and upper approximation operators
formed by an equivalence relation on a finite universe [14]. However, it is
clear that the equivalence relation has some limitations in rough set theory
applications. In order to expand the application areas of the theory, the
equivalence relation has been replaced by an arbitrary binary relation. In
this way, it has been the generalization of concepts of Pawlak rough set
approximation operators [17–19].

A texturing U of a set U is a complete and completely distributive lat-
tice of subset of the power set P(U) which satisfies some certain conditions.
It was shown that[1–3] texture spaces provide a a unified setting for the
study of fuzzy lattices and their topologies and bitopologies. Further dire-
lations which are compatible the lattice structure of texture spaces defined
as a suitable morphisms in categories of texture spaces. In recent years,
generalizations of some concepts have been studied in texture space theory
[10–13].
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In [6], textural rough set algebra was introduced to approach for gener-
alized rough set, and it is obtained effective results for classical rough sets.
Note that (U,U, σ, r←, R←) is called a textural rough set algebra where (r,R)
is a complemented direlation on complemented texture space (U,U, σ) and
(R←, r←) is inverse direlation of (r,R). The pair (r←A,R←A) is approxima-
tions of a set A ∈ U where r←A and R←A are presections of A. It has been
studied rough sets through algebraic approach in texture theory[7–9]. The
aim of this study is introduced the notion of serial direlation and analyze
the corresponding textural rough sets.
In the next sections [2-4], we shall briefly the basic motivation and its study
for texture spaces. For more details, we refer to [1-5].

2. Texture spaces

Let U be a set. A texturing U of U is a subset of P(U) which is a point-
separating, complete, completely distributive lattice containing U and ∅,
and for which meet coincides with intersection and finite joins with union.
The pair (U,U) is then called a texture space, or shortly texture.
For u ∈ U , the p-sets and, as a dually, the q-sets are defined by

Pu =
⋂
{A ∈ U | u ∈ A}, Qu =

∨
{A ∈ U | u /∈ A}.

A mapping σU : U→ U is called a complementation on (U,U) if it satisfies
the conditions σU (σU (A)) = A for all A ∈ U and A ⊆ B =⇒ σU (B) ⊆ σU (A)
for all A,B ∈ U. In this case (U,U, σ) is said to be complemented texture.

Example 1. (1) For any set U , (U,P(U), cU ) is the complemented discrete
texture representing the usual set structure of X. Here the complementation
cU (A) = U \A, A ⊆ U , is the usual set complement. Clearly, Pu = {u} and
Qu = U \ {u} for all u ∈ U .

(2) Let L = (0, 1], L = {(0, r] | r ∈ [0, 1]} and λ((0, r]) = (0, 1−r], r ∈ [0, 1].
Then (L,L, λ) is complemented texture space. Here Pr = Qr = (0, r] for all
r ∈ L. (L,L) is said to be Hutton texture.

(3) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}, ι([0, t]) =
[0, 1− t) and ι([0, t)) = [0, 1− t], t ∈ [0, 1]. Again (I, I, ι) is a complemented
texture, which is called unit interval texture. Here Pt = [0, t] and Qt = [0, t)
for all t ∈ I.

(4) The product texture (U × V,U ⊗ V) of textures (U,U) and (V,V). Here
the product texturing U⊗ V of U × V consists of arbitrary intersections of
sets of the form (A× V ) ∪ (U ×B), A ∈ U and B ∈ V.
For (u, v) ∈ U × V , P(u,v) = Pu × Pv and Q(u,v) = (Qu × V ) ∪ (U ×Qv).
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3. Direlations

Let (U,U), (V,V) be textures. Consider the product texture P(U) ⊗ V

of the textures (U,P(U)) and (V,V) (see Example 1 (4)). We denote the
p-sets and the q-sets by P (u,v) and Q(u,v), respectively. From the product
texturing, it is obtained that

P (u,v) = {u} × Pv and Q(u,v) = (U \ {u} × V ) ∪ (U ×Qv)

where u ∈ U and v ∈ V . It is easy to see that P (u,v) * Q(u′,v′) implies
u = u′ and Pv * Qv′

Then:
(1) r ∈ P(U)⊗ V is called a relation from (U,U) to (V,V) if it satisfies:

R1 r * Q(u,v), Pu′ * Qu implies r * Q(u′,v).

R2 r * Q(u,v) implies ∃u′ ∈ U such that Pu * Qu′ and r * Q(u′,v).

(2) R ∈ P(U)⊗V is called a corelation from (U,U) to (V,V) if it satisfies
CR1 P (u,v) * R,Pu * Qu′ implies P (u′,v) * R.

CR2 P (u,v) * R implies ∃u′ ∈ U such that Pu′ * Qu and P (u′,v) * R.

(3) A pair (r,R), where r is a relation and R a corelation from (U,U)
to (V,V) is called a direlation from (U,U) to (V,V).

Examples 2. (1) The identity direlation (i, I) on (U,U) is defined by

i =
∨
{P (u,u) | u ∈ U} and I =

⋂
{Q(u,u) | U * Qu}.

(2) Let (r,R) be a direlation from the discrete texture (U,P(U)) to the
discrete texture (V,P(V )). Since P(U × V ) = P(U) ⊗ P(V ), r and R are
point relation from U to V .

Inverses of a direlation: The inverses of r and R are defined by

r← =
⋂
{Q(v,u) | r * Q(u,v)} and R← =

∨
{P (v,u) | P (u,v) * R}

respectively, where r← is a corelation and R← is a relation.

The direlation (r,R)← = (R←, r←) from (V,V) to (U,U) is called the inverse
of the direlation (r,R).

The complement of a direlation: Let (r,R) be a direlation between the
complemented textures (U,U, σU ) and (V,V, σV ).

(1) The complement r′ of the relation r is the co-relation

r′ =
⋂
{Q(u,v) | ∃w, z,

r * Q(w,z), σU (Qu) * Qw and Pz * σV (Pv)}.
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(2) The complement R′ of the co-relation R is the relation

R′ =
∨
{P (u,v) | ∃w, z, P (w,z) * R,

Pw * σU (Pu) and σV (Qv) * Qz}.

(3) The complement (r,R)′ of the direlation (r,R) is the direlation
(r,R)′ = (R′, r′)

A direlation (r,R) on (U,U) is said to be complemented if (r,R)′ = (r,R).

Order between Direlations: Let (r1, R1) and (r2, R2) be direlations from
(U,U) to (V,V). The inclusion v between direlations is defined by

(r1, R1) v (r2, R2) if r1 ⊆ r2 andR2 ⊆ R1.

A direlation (r,R) on (U,U) is called:
(i) reflexive if (i, I) v (r,R),
(ii) symmetric if (r,R)← = (r,R),
(iii) transitive if (r,R) ◦ (r,R) v (r,R).

4. Sections and presections

Let us recall that[4] some properties of sections and presections are given
in this subsection.

Let (r,R) be a direlation on (U,U) and A,B ∈ U. The A-sections under
(r,R) are given as:

r→A =
⋂
{Qv | ∀u, r * Q(u,v) =⇒ A ⊆ Qu},

R→A =
∨
{Pv | ∀u, P (u,v) * R =⇒ Pu ⊆ A}.

Likewise, the B-presections under (r,R) are given as

r←B =
∨
{Pu | ∀v, r * Q(u,v) =⇒ Pv ⊆ B},

R←B =
⋂
{Qu | ∀v, P (u,v) * R =⇒ B ⊆ Qv}.

Note that section and presection are related as in the next result:

Lemma 3. Let (r,R) be a direlation (U,U) and A ∈ U. Then:

A ⊆ r←(r→A) and r→(r←A) ⊆ A,
R←(R→A) ⊆ A and A ⊆ R→(R←A),

(r←)←A = r→A and (R←)←A = R→A.

Some basic properties of sections and presections such as inclusion and meet
and join are given below.
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Lemma 4. Let A,B ∈ U and {Aj | j ∈ J} ⊆ U. Then sections and
presections satisfy the following properties.

(i) r→∅ = ∅ and R→U = U, r←U = U andR←∅ = ∅
(ii) A ⊆ B =⇒ r→A ⊆ r→B, A ⊆ B =⇒ r←A ⊆ r←B
(iii) A ⊆ B =⇒ R→A ⊆ R→B, A ⊆ B =⇒ R←A ⊆ R←B

(iv) r→(
∨
j∈J

Aj) =
∨
j∈J

r→Aj ,
∨
j∈J

r←Aj ⊆ r←(
∨
j∈J

Aj)

(v) r→(
⋂
j∈J

Aj) ⊆
⋂
j∈J

r→Aj , r←(
⋂
j∈J

Aj) =
⋂
j∈J

r→Aj

(vi)
∨
j∈J

R→Aj ⊆ R→(
∨
j∈J

Aj), R←(
∨
j∈J

Aj) =
∨
j∈J

R←Aj

(vii) R→(
⋂
j∈J

Aj) =
⋂
j∈J

R→(Aj), R←(
⋂
j∈J

Aj) ⊆
⋂
j∈J

R←Aj

Lemma 5. Let (r,R) be a direlation on a complemented texture (U,U, σ).
For A ∈ U, hold

(i) (r′)→A = σ(r→σ(A)) and (R′)→A = σ(R→σ(A)),
(ii) (r′)←A = σ(r←σ(A)) and (R′)←A = σ(R←σ(A)).

From [11, Proposition 4.4.], we have:

Proposition 6. Let (r,R) be a direlation on a texture (U,U). Then:
(i) (r,R) is reflexive if and only if r←A ⊆ A ⊆ R←A, for all A ∈ U.
(ii) (r,R) is transitive if and only if r←A ⊆ r←r←A and R←R←A ⊆

R←A for all A ∈ U.
(iii) If (r,R) is symmetric then we have R←r←A ⊆ A ⊆ r←R←A for all

A ∈ U.

5. Serial direlation

As is known, in the rough set theory, the characterizations of reflexive and
transitive binary relations are given by the lower and upper approximation
operators [18]. This leads to the following serialness concepts for a direlation
on texture spaces.

Definition 7. Let (r,R) be a direlation on (U,U). Then
(a) It is called serial if r←A ⊆ R←A for all A ∈ U.
(b) It is called inverse serial if R→A ⊆ r→A for all A ∈ U.

Proposition 8. Let (r,R) be a direlation on (U,U).
(i) If (r,R) is reflexive then it is serial.
(ii) If (r,R) is serial and symmetric and transitive then it is reflexive.
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Proof. (i) Let (r,R) be a reflexive direlation on (U,U). Since r←(A) ⊆ A ⊆
R←(A) for all A ∈ U, (r,R) is a serial direlation.

(ii) Let (r,R) be a serial and symmetric and transitive direlation on (U,U).
For A ∈ U,

r←A ⊆ r←r←A , R←A ⊇ R←R←A (transitivity)

⊆ R←r←A ⊇ r←R←A(serialness)
⊆ A , ⊇ A (symmetricalness)

Hence, we have r←A ⊆ R←A, for all A ∈ U. �

Lemma 9. Let (r,R) be a direlation on (U,U). We have:
(i) (r,R) is serial if and only if r←∅ = ∅ ⇐⇒ R←U = U .
(ii) (r,R) is inverse serial if and only if R→∅ = ∅ ⇐⇒ r→U = U .

Proof. Suppose that (r,R) is a direlation on (U,U).
(i) From Lemma 4, R←∅ = ∅ and r←U = U . Then

(r,R) is serial⇐⇒ r←A ⊆ R←A , ∀A ∈ U

⇐⇒ r←∅ ⊆ R←∅ , ∅ ∈ U

⇐⇒ r←∅ ⊆ ∅
⇐⇒ r←∅ = ∅

(r,R) is serial⇐⇒ r←A ⊆ R←A , ∀A ∈ U

⇐⇒ r←U ⊆ R←U , U ∈ U

⇐⇒ U ⊆ R←U
⇐⇒ R←U = U

(ii) From Lemma 4, r→∅ = ∅ and R→U = U . Then

(r,R) is inverse serial⇐⇒ R→A ⊆ r→A , ∀A ∈ U

⇐⇒ R→∅ ⊆ r→∅ , ∅ ∈ U

⇐⇒ R→∅ ⊆ ∅
⇐⇒ R→∅ = ∅

(r,R) is inverse serial⇐⇒ R→A ⊆ r→A , ∀A ∈ U

⇐⇒ R→U ⊆ r→U , U ∈ U

⇐⇒ U ⊆ r←U
⇐⇒ r→U = U. �

Proposition 10. Let (r,R) be a symmetric direlation on (U,U). Then

(r,R) is a serial direlation if and only if it is a inverse serial direlation.
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Proof. We suppose that (r,R) is a symmetric direlation on (U,U). Since
(r,R) = (r,R)←, we have r←A = R←A and R←A = r←A for all A ∈ U.
Then, for A ∈ U:

(r,R) is serial⇐⇒ r←A ⊆ R←A
⇐⇒ R→A ⊆ r→A
⇐⇒ (r,R) is inverse serial. �

Corollary 11. Let (r,R)← be inverse direlation of (r,R). Then (r,R) is
(inverse-) serial if and only if (r,R)← is (inverse-) serial.

Proof. Suppose that (r,R)← is inverse direlation of (r,R). Then (r,R)←

= (R←, r←), and (r←)←A = r→A, (R←)←A = R→A, for all A ∈ U, from
Lemma 3. Further, (r,R)← = (R←, r←) is serial if and only if (R←)←A =
R→A ⊆ (r←)←A = r→A. Likewise, (r,R)← = (R←, r←) is inverse serial if
and only if (r←)←A = r→A ⊆ (R←)←A = R→A. Consequently, the proof
is completed. �

Proposition 12. Let (r,R)′ be complement direlation of (r,R) on a com-
plemented texture (U,U, σ). Then

(i) (r,R) is serial if and only if (r,R)′ is serial.
(ii) (r,R) is inverse serial if and only if (r,R)′ is inverse serial.

Proof. Suppose that (r,R)′ = (R′, r′) is complement direlation of (r,R).
From Lemma 5, (R′)←A = σ(R←σ(A)) and (r′)←A = σ(r←σ(A)) for all
A ∈ U. Then
(i) Let A ∈ U. Then σ(A) ∈ U.

(r,R) is serial⇐⇒ r←σ(A) ⊆ R←σ(A)
⇐⇒ σ(R←σ(A)) ⊆ σ(r←σ(A))
⇐⇒ (R′)←(A) ⊆ (r′)←(A)

⇐⇒ (R′, r′) is serial.

(ii) Let A ∈ U. Then σ(A) ∈ U.

(r,R) is inverse serial⇐⇒ R→σ(A) ⊆ r→σ(A)
⇐⇒ σ(r→σ(A)) ⊆ σ(R←σ(A))
⇐⇒ (r′)→(A) ⊆ (R′)→(A)

⇐⇒ (R′, r′) is inverse serial. �

Let (U,U, σ) be a complemented texture and L,H : U→ U be two unary
operators. Recall that [6] L and H are called dual operators on (U,U)if
L(A) = H(σ(A)) and H(A) = L(σ(A)) for all A ∈ U. Now, we consider the
following property:
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(L1)L(U) = U , (H1)H(∅) = ∅,

(L2)L(
⋂
j∈J

Aj) =
⋂
j∈J

L(Aj) , (H2)H(
∨
j∈J

Aj) =
∨
j∈J

H(Aj).

Then we have (L1) ⇐⇒ (H1) and (L2) ⇐⇒ (H2), for the dual operators
L,H : U→ U on the texture (U,U, σ).

Recall that [6] if the dual operators L and H satisfy conditions (L1) and
(L2) (or equivalently,(H1) and (H2)), then the system (U,U, σ, L,H) is
called a textural rough set algebra, and the operators L and H are called
approximation operators on (U,U). In this case, the pair (L(A), H(A)) is
called textural rouhg set for A ∈ U where L(A) is lower rough set and H(A)
is upper rough set.

Note that if (r,R) is a complemented direlation on (U,U, σ), then the system
(U,U, σ, r←, R←) is a textural rough set algebra where r←, R← : U→ U are
approximation operators.

Proposition 13. Let L,H : U→ U be dual operators on the complemented
texture (U,U, σ). Then there exists a unique complemented serial direlation
(r,R) on (U,U, σ) such that L(A) = r←A and (H(A) = R←A for all A ∈ U

if and only if L and H satisfy (L1) and (L2) (or equivalently,(H1) and (H2))
and the following property:

(D) L(A) ⊆ H(A), ∀A ∈ U.

Proof. Let L,H : U → U be dual operators on the complemented texture
(U,U, σ).

(=⇒) First, we suppose that (r,R) is a complemented serial direlation on a
complemented texture (U,U, σ) such that L(A) = r←A and H(A) = R←A
for all A ∈ U. From Lemma 4, we have L(U) = r←U = U and L(

⋂
j∈J Aj) =

r←(
⋂

j∈J Aj) = (
⋂

j∈J r
←Aj =

⋂
j∈J L(Aj). Hence, the operator L satisfies

(L1) and (L2). Since σ(r←A) = R←(σ(A)), r←, R← : U → U are dual
operators, and so the operator H satisfies (H1) and (H2). Finally, since
(r,R) is serial direlation we have L(A) = r←A ⊆ R←A = H(A) for all
A ∈ U. Consequently, the property (D) is also satisfied.

Otherwise, we suppose that the dual operators L and H satisfy (L1) and
(L2) and (D). It was proved that [6] the equalities

r =
∨
{P (u,v) | u, v ∈ U, Pu * L(Qv)}

R =
⋂
{Q(u,v) | u, v ∈ U, H(Qv) * Qu}
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define a unique complemented direlation on (U,U) such that L(A) = r←A
and (H(A) = R←A for all A ∈ U. Further, (r,R) is serial direlation, since
the operators L and H satisfy the property (D). �

Note 14. From the Lemma 9, the property (D) can be replaced

(L3) L(∅) = ∅,
(H3) H(U) = U.

6. Serial relation and direlation

In this section, we observe the relationship between a serial binary relation
and direlation.

Let r be a binary relation on a universe U . Then it is called serial if for each
u ∈ U , there exists v ∈ U such that (u, v) ∈ U ; r is inverse serial if for each
u ∈ U , there exists v ∈ U such that (v, u) ∈ U [18].

Now let r be a binary relation on a universe U . Then the pair (U, r) is called
a generalized approximation space. The operators app

r
, appr : P(U)→ P(U)

defined by
app

r
A ={u ∈ U | r(u) ⊆ A},

apprA ={u ∈ U | r(u) ∩A 6= ∅}, A ⊆ U
are called lower approximation operator and upper approximation opera-
tor, respectively where r(u) = {v ∈ U | (u, v) ∈ r}. Then the pair
(app

r
A, apprA) is called the rough set of A [18]. If the relation r is se-

rial, then the rough set is serial rough set. Further, r is serial if and only if
app

r
A ⊆ apprA for all A ⊆ U .

Recall that [6] if (r,R) is a complemented direlation on (U,U) then
(U,U, r←, R←) is called complemented textural approximation space. Then
r← and R← are approximation operators on (U,U, σ), and so the pair
(r←A,R←A) is textural rough set of A ∈ U.

Now we observe that [4] if r be a point relation on a set U , then the pair (r,R)
is a direlation on the discrete texture (U,P(U)) where R = (U×U)\r. Note
that (r,R) is complemented and the inverse direlation (r,R)← = (R←, r←)
can be stated by inverse point relation such that R← = r−1 and r← =
(U × U) \ r−1.

Corollary 15. Let r be a binary relation on a universe U . Then r is
serial (inverse serial) if and only if the corresponding direlation (r,R) on the
discrete texture (U,P(U)) is serial (inverse serial).

Proof. Suppose that r is a binary relation on a universe U and (r,R) is the
corresponding direlation the discrete texture (U,P(U)). It was shown [6]
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that (r←A,R←A) = (app
r
A, apprA) for all A ∈ U. Then we have:

r is serial ⇐⇒ app
r
A ⊆ apprA, A ⊆ U

⇐⇒ r←A ⊆ R←A, A ∈ P(U)

⇐⇒ (r,R) is serial. �

7. Conclusion

Rough sets are defined on the basis of lower and upper approximation
operators obtained from the equivalence relations. In addition, generalized
rough sets obtained from reflexive, transitive or serial relations are used in
solving various problems in many areas as well as in topology.

Textural rough set algebra was introduced to approach for generalized
rough set, and it is obtained effective results for classical rough sets. On
the other hand, ditopologies (dichotomous topologies) on textures unify the
fuzzy topologies, topologies and bitopologies in a non-complemented setting
by means of duality in the textural concepts [5].

In this study, serial direlations are defined and their algebraic properties
are investigated. In further studies, the conditions for obtaining a ditopology
from the serial direlation and the algebraic properties of serial textural rough
sets can be examined.
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